Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.

نویسندگان

  • W E Courchesne
  • B Magasanik
چکیده

Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The produ...

متن کامل

Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in S. cerevisiae

A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, isn’t subject to leucine-dependent TorC1 activation. This led us...

متن کامل

Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors

Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment wit...

متن کامل

Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led u...

متن کامل

Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae.

The cellular level and activity of the general amino acid permease, the product of the GAP1 gene of Saccharomyces cerevisiae, are regulated at the level of transcription by two systems, the products of URE2/GLN3 and NIL1 in response to the nitrogen sources of the growth medium and inactivation in response to the presence of glutamine or glutamate. Active permease is phosphorylated. The addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 170 2  شماره 

صفحات  -

تاریخ انتشار 1988